Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578804

RESUMEN

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Asunto(s)
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniasis Cutánea , Leishmaniasis Visceral , Animales , Humanos , Leishmania tropica/genética , Leishmania infantum/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Macrófagos
2.
Sci Rep ; 13(1): 21598, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062105

RESUMEN

The current global pandemic of COVID-19 is characterized by waves of infection due to the emergence of new SARS-CoV-2 variants carrying mutations on the Spike (S) protein gene. Since autumn 2020 many Variants of Concern (VOC) have been reported: Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, Omicron/B.1.1.529, and sublineages. Surveillance of genomic variants is currently based on whole-genome sequencing (WGS) of viral genomes on a random fraction of samples positive to molecular tests. WGS involves high costs, extended analysis time, specialized staff, and expensive instruments compared to a PCR-based test. To rapidly identify the VOCs in positive samples, six assays based on real-time PCR and high-resolution melting (HRM) were designed on the S gene and applied to 120 oro/nasopharyngeal swab samples collected from October 2020 to June 2022 (106 positive and 14 negative samples). Overall, the assays showed 100% specificity and sensitivity compared with commercial PCR tests for COVID-19. Moreover, 104 samples out of 106 (98.1%) were correctly identified as follows: 8 Wuhan (wild type), 12 Alpha, 23 Delta, 46 Omicron BA.1/BA.1.1, 15 Omicron BA.2/BA.4/BA.5. With our lab equipment, about 10 samples can be processed every 3 h at the cost of less than € 10 ($ 10.60) per sample, including RNA extraction. The implementation of this approach could help local epidemiological surveillance and clinical decision-making.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Bioensayo
3.
Redox Biol ; 67: 102915, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37866162

RESUMEN

Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein ß and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.


Asunto(s)
Clozapina , Liposarcoma , Humanos , Animales , Ratones , NADPH Oxidasas/metabolismo , Adipogénesis , Especies Reactivas de Oxígeno/metabolismo , Clozapina/farmacología , Clozapina/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Liposarcoma/metabolismo
4.
Chem Biol Interact ; 383: 110694, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37659621

RESUMEN

A 6 h exposure of U937 cells to 2.5 µM arsenite stimulates low Ca2+ release from the inositol 1, 4, 5-triphosphate receptor (IP3R), causing a cascade of causally connected events, i.e., endoplasmic reticulum oxidoreductin-1α (ERO1α) expression, activation of the ryanodine receptor (RyR), mitochondrial Ca2+ accumulation, mitochondrial superoxide formation and further ERO1α expression. At greater arsenite concentrations, the release of the cation from the IP3R and the ensuing ERO1α expression remained unchanged but were nevertheless critical to sequentially promote concentration-dependent increases in Ca2+ release from the RyR, NADPH oxidase activation and a third mechanism of ERO1α expression which, in analogy to the one driven by mitochondrial superoxide, was also mediated by reactive oxygen species (ROS) and devoid of effects on Ca2+ homeostasis. Thus, concentration-independent stimulation of Ca2+ release from the IP3R is of pivotal importance for the effects of arsenite on Ca2+ homeostasis. It stimulates the expression of a fraction of ERO1α that primes the RyR to respond to the metalloid with concentration-dependent Ca2+-release, triggering the formation of superoxide in the mitochondrial respiratory chain and via NADPH oxidase activation. The resulting dose-dependent ROS formation was associated with a progressive increase in ERO1α expression, which however failed to affect Ca2+ homeostasis, thereby suggesting that ROS, unlike IP3R-dependent Ca2+ release, promote ERO1α expression in sites distal from the RyR.


Asunto(s)
Arsenitos , Especies Reactivas de Oxígeno , Canal Liberador de Calcio Receptor de Rianodina , Arsenitos/toxicidad , Homeostasis , NADPH Oxidasas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Superóxidos , Calcio/metabolismo , Humanos
5.
Parasit Vectors ; 16(1): 282, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580789

RESUMEN

BACKGROUND: Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS: A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS: The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS: Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.


Asunto(s)
Glucosa-6-Fosfato Isomerasa , Leishmania infantum , Proteínas Protozoarias , Genotipo , Glucosa-6-Fosfato Isomerasa/genética , Leishmania infantum/enzimología , Leishmania infantum/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Protozoarias/genética
6.
Viruses ; 15(5)2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37243247

RESUMEN

The humoral response after vaccination was evaluated in 1248 individuals who received different COVID-19 vaccine schedules. The study compared subjects primed with adenoviral ChAdOx1-S (ChAd) and boosted with BNT162b2 (BNT) mRNA vaccines (ChAd/BNT) to homologous dosing with BNT/BNT or ChAd/ChAd vaccines. Serum samples were collected at two, four and six months after vaccination, and anti-Spike IgG responses were determined. The heterologous vaccination induced a more robust immune response than the two homologous vaccinations. ChAd/BNT induced a stronger immune response than ChAd/ChAd at all time points, whereas the differences between ChAd/BNT and BNT/BNT decreased over time and were not significant at six months. Furthermore, the kinetic parameters associated with IgG decay were estimated by applying a first-order kinetics equation. ChAd/BNT vaccination was associated with the longest time of anti-S IgG negativization and with a slow decay of the titer over time. Finally, analyzing factors influencing the immune response by ANCOVA analysis, it was found that the vaccine schedule had a significant impact on both the IgG titer and kinetic parameters, and having a Body Mass Index (BMI) above the overweight threshold was associated with an impaired immune response. Overall, the heterologous ChAd/BNT vaccination may offer longer-lasting protection against SARS-CoV-2 than homologous vaccination strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Estudios Longitudinales , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , ChAdOx1 nCoV-19 , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
BMC Vet Res ; 18(1): 247, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761326

RESUMEN

BACKGROUND: Leishmaniases are a group of anthropo-zoonotic parasitic diseases caused by a protozoan of the Leishmania genus, affecting both humans and other vertebrates, including dogs. L. infantum is responsible for the visceral and occasionally cutaneous form of the disease in humans and canine leishmaniasis. Previously, we have shown that L. infantum induces a mild but significant increase in endoplasmic reticulum (ER) stress expression markers to promote parasites survival in human and murine infected macrophages. Moreover, we demonstrated that the miRNA hsa-miR-346, induced by the UPR-activated transcription factor sXBP1, was significantly upregulated in human macrophages infected with different L. infantum strains. However, the ER stress response in infected dogs, which represent an important reservoir for Leishmania parasite, was described once recently, whereas the miR-346 expression was not reported before. Therefore, this study aimed to investigate these pathways in the canine macrophage-like cell line DH82 infected by Leishmania spp. and to evaluate the presence of cfa-miR-346 in plasma of non-infected and infected dogs.  The DH82 cells were infected with L. infantum and L. braziliensis parasites and the expression of cfa-mir-346 and several ER stress markers was evaluated by quantitative PCR (qPCR) at different time points. Furthermore, the cfa-miR-346 was monitored in plasma collected from non-infected dogs (n = 11) and dogs naturally infected by L. infantum (n = 18). RESULTS: The results in DH82 cells showed that cfa-mir-346 was induced at both 24 h and 48 h post-infection with all Leishmania strains but not with tunicamycin, accounting for a mechanism of induction independent from sXBP1, unlike what was previously observed in human cell lines. Moreover, the cfa-miR-346 expression analysis on plasma revealed a significant increase in infected dogs compared to non-infected dogs. CONCLUSIONS: Here for the first time, we report the upregulation of cfa-miR-346 induced by Leishmania infection in canine macrophage-like cells and plasma samples of naturally infected dogs. According to our results, the cfa-miR-346 appears to be linked to infection, and understanding its role and identifying its target genes could contribute to elucidate the mechanisms underlying the host-pathogen interaction in leishmaniasis.


Asunto(s)
Enfermedades de los Perros , Leishmaniasis Visceral , MicroARNs , Animales , Enfermedades de los Perros/genética , Enfermedades de los Perros/parasitología , Perros , Leishmania infantum , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/veterinaria , MicroARNs/genética
8.
Vaccines (Basel) ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35455240

RESUMEN

We evaluated the post-vaccination humoral response of three real-world cohorts. Vaccinated subjects primed with ChAdOx1-S and boosted with BNT162b2 mRNA vaccine were compared to homologous dosing (BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S). Serum samples were collected two months after vaccination from a total of 1248 subjects. The results showed that the heterologous vaccine schedule induced a significantly higher humoral response followed by homologous BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S vaccines (p < 0.0001). Moreover, analyzing factors (i.e., vaccine schedule, sex, age, BMI, smoking, diabetes, cardiovascular diseases, respiratory tract diseases, COVID-19 diagnosis, vaccine side effects) influencing the IgG anti-S response, we found that only the type of vaccine affected the antibody titer (p < 0.0001). Only mild vaccine reactions resolved within few days (40% of subjects) and no severe side effects for either homologous groups or the heterologous group were reported. Our data support the use of heterologous vaccination as an effective and safe alternative to increase humoral immunity against COVID-19.

9.
Microorganisms ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073643

RESUMEN

Cutaneous leishmaniasis (CL) caused by Leishmania (Leishmania) infantum is endemic in the Mediterranean basin. Here we report an autochthonous case of CL in a patient living in central Italy with an unsatisfactory response to treatment with intralesional Meglumine Antimoniate and in vitro demonstration of reduced susceptibility to SbIII. Parasitological diagnosis was first achieved by histopathology on tissue biopsy and the patient was treated with a local infiltration of Meglumine Antimoniate. Since the clinical response at 12 weeks from the treatment's onset was deemed unsatisfactory, two further skin biopsies were taken for histopathological examination, DNA extraction and parasite isolation. L. (L.) infantum was identified by molecular typing. The low susceptibility to Meglumine Antimoniate was confirmed in vitro: the promastigotes from the patient strain showed significantly lower susceptibility to SbIII (the active trivalent form of antimonial) compared to the reference strain MHOM/TN/80/IPT1. The patient underwent a new treatment course with intravenous liposomal Amphotericin B, reaching complete healing of the lesion. Additional studies are needed to confirm the epidemiological and clinical relevance of reduced susceptibility to SbIII of human L. (L.) infantum isolate in Italy.

10.
Antioxidants (Basel) ; 10(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530504

RESUMEN

I-152 combines two pro-glutathione (GSH) molecules, namely N-acetyl-cysteine (NAC) and cysteamine (MEA), to improve their potency. The co-drug efficiently increases/replenishes GSH levels in vitro and in vivo; little is known about its mechanism of action. Here we demonstrate that I-152 not only supplies GSH precursors, but also activates the antioxidant kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 (KEAP1/NRF2) pathway. The mechanism involves disulfide bond formation between KEAP1 cysteine residues, NRF2 stabilization and enhanced expression of the γ-glutamil cysteine ligase regulatory subunit. Accordingly, a significant increase in GSH levels, not reproduced by treatment with NAC or MEA alone, was found. Compared to its parent compounds, I-152 delivered NAC more efficiently within cells and displayed increased reactivity to KEAP1 compared to MEA. While at all the concentrations tested, I-152 activated the NRF2 pathway; high doses caused co-activation of activating transcription factor 4 (ATF4) and ATF4-dependent gene expression through a mechanism involving Atf4 transcriptional activation rather than preferential mRNA translation. In this case, GSH levels tended to decrease over time, and a reduction in cell proliferation/survival was observed, highlighting that there is a concentration threshold which determines the transition from advantageous to adverse effects. This body of evidence provides a molecular framework for the pro-GSH activity and dose-dependent effects of I-152 and shows how synergism and cross reactivity between different thiol species could be exploited to develop more potent drugs.

11.
ACS Omega ; 6(51): 35699-35710, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984300

RESUMEN

We report the evaluation of a small library of azole-bisindoles for their antileishmanial potential, in terms of efficacy on Leishmania infantum promastigotes and intracellular amastigotes. Nine compounds showed good activity on L. infantum MHOM/TN/80/IPT1 promastigotes with IC50 values ranging from 4 to 10 µM. These active compounds were also tested on human (THP-1, HEPG2, HaCaT, and human primary fibroblasts) and canine (DH82) cell lines. URB1483 was selected as the best compound, with no quantifiable cytotoxicity in mammalian cells, to test the efficacy on intracellular amastigotes. URB1483 significantly reduced the infection index of both human and canine macrophages with an effect comparable to the clinically used drug pentamidine. URB1483 emerges as a new anti-infective agent with remarkable antileishmanial activity and no cytotoxic effects on human and canine cells.

12.
Microorganisms ; 8(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339158

RESUMEN

The parasite protozoan Leishmania, the causative agent of leishmaniasis, includes two subgenera of medical interest: Leishmania (Leishmania) and Leishmania (Viannia). Parasite species detection and characterization is crucial to choose treatment protocols and to monitor the disease evolution. Molecular approaches can speed up and simplify the diagnostic process. In particular, several molecular assays target the mitochondrial DNA minicircle network (kDNA) that characterizes the Leishmania genus. We previously proposed a qPCR assay targeting kDNA, followed by high resolution melt (HRM) analysis (qPCR-ML) to distinguish L. (L.) infantum and L. (L.) amazonensis from L. Viannia species. Successively, this assay has been integrated with other qPCR assays, to differentiate L. (L.) infantum, L. (L.) amazonensis and L. (L.) mexicana. In this work, we tested the applicability of our qPCR-ML assay on L. (L.) donovani, L. (L.) major, L. (L.) tropica and L. (L.) aethiopica, showing that the qPCR-ML assay can also amplify Old World species, different from L. (L.) infantum, with good quantification limits (1 × 10-4-1 × 10-6 ng/pcr tube). Moreover, we evaluated 11 L. (L.) infantum strains/isolates, evidencing the variability of the kDNA minicircle target molecules among the strains/isolates of the same species, and pointing out the possibility of quantification using different strains as reference. Taken together, these data account for the consideration of qPCR-ML as a quantitative pan-Leishmania assay.

13.
Microorganisms ; 8(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486117

RESUMEN

Leishmania protozoa are the etiological agents of visceral, cutaneous and mucocutaneous leishmaniasis. In specific geographical regions, such as Latin America, several Leishmania species are endemic and simultaneously present; therefore, a diagnostic method for species discrimination is warranted. In this attempt, many qPCR-based assays have been developed. Recently, we have shown that L. (L.) infantum and L. (L.) amazonensis can be distinguished through the comparison of the Cq values from two qPCR assays (qPCR-ML and qPCR-ama), designed to amplify kDNA minicircle subclasses more represented in L. (L.) infantum and L. (L.) amazonensis, respectively. This paper describes the application of this approach to L. (L.) mexicana and introduces a new qPCR-ITS1 assay followed by high-resolution melt (HRM) analysis to differentiate this species from L. (L.) amazonensis. We show that L. (L.) mexicana can be distinguished from L. (L.) infantum using the same approach we had previously validated for L. (L.) amazonensis. Moreover, it was also possible to reliably discriminate L. (L.) mexicana from L. (L.) amazonensis by using qPCR-ITS1 followed by an HRM analysis. Therefore, a diagnostic algorithm based on sequential qPCR assays coupled with HRM analysis was established to identify/differentiate L. (L.) infantum, L. (L.) amazonensis, L. (L.) mexicana and Viannia subgenus. These findings update and extend previous data published by our research group, providing an additional diagnostic tool in endemic areas with co-existing species.

14.
Acta Trop ; 201: 105178, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31606374

RESUMEN

Leishmaniasis is a complex disease caused by Leishmania species belonging to subgenera Leishmania and Viannia. In South America, L. (L.) infantum is considered the most important causative agent of visceral leishmaniasis, while L. (L.) amazonensis and Viannia subgenus species are responsible for the different cutaneous or mucocutaneous forms. In our previous work, we developed a diagnostic approach for Leishmania species discrimination based on two qPCRs (qPCR-ML and qPCR-ama) targeting the minicircle kDNA followed by melting analysis. This approach allowed to (i) differentiate the subgenera Leishmania and Viannia, and (ii) distinguish between L. (L.) infantum and L. (L.) amazonensis. The aim of this work was to demonstrate the applicability of the approach previously described, using human and canine clinical samples and strains from a Brazilian region, where L. (L.) infantum, L. (L.) amazonensis and Viannia subgenus species coexist. After validation on New World strains, the diagnostic approach was applied blindly to 36 canine clinical samples (peripheral blood and bone marrow) and 11 human clinical samples (peripheral blood and bone marrow). The sensitivity was 95.6% (95% confidence interval 77.3-100%) and 100% (95% confidence interval 76.9-100%) in the canine bone marrow samples and human (peripheral blood and bone marrow) samples, respectively, compared to conventional PCR assays. Concerning the Leishmania species identification, the conventional and qPCR-based methods showed kappa value of 0.876 (95% confidence interval 0.638-1.000), indicating good agreement. Therefore, this approach proved to be useful in both veterinary and human clinical context in regions co-endemic for L. (L.) infantum, L. (L.) amazonensis, and Viannia subgenus, helping to provide rapid diagnosis and to allow studies of species distribution.


Asunto(s)
Leishmania infantum/genética , Leishmania mexicana/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Brasil , Perros , Humanos
15.
Data Brief ; 28: 104914, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31886353

RESUMEN

This article contains the data regarding Leishmania species identification in human and canine clinical samples from a Brazilian region endemic for Leishmania (Viannia) spp., Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis, using a previously developed approach involving two qPCR assays (qPCR-ML and qPCR-ama). The data are related to the article "Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: application on Brazilian clinical samples" [1], and include also details of clinical evaluation/diagnosis of human patients and primer sequences used in the qPCR assays. The Leishmania species has been determined in 27 canine samples and 11 human samples, exploiting HRM analysis of qPCR-ML and Cq values of qPCR-ML and qPCR-ama, as reported previously [2]. The qPCR data were in agreement with the species characterization obtained with other methods such as conventional species-specific PCR, ITS1 PCR-RFLP or DNA sequencing. Despite the limited number of clinical samples, these data are encouraging for a potential application in regions where L. (Viannia) spp., L. (L.) infantum and L. (L.) amazonensis are co-endemic.

16.
Front Microbiol ; 9: 1019, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867904

RESUMEN

Leishmaniasis is an anthropo-zoonotic disease caused by various Leishmania species. The clinical manifestations of the disease vary according to the species and host characteristics. Leishmania infection leads to subversion/modulation of the host's innate immune response and cellular metabolic pathways. In the last years, it has been shown that many host cell gene expression and signaling pathways are targeted by Leishmania to subvert host defenses (e.g., oxidative damage, immune activation, antigen presentation, apoptosis) and allow parasite survival and replication. However, the molecular mechanisms triggered by the parasite are not fully elucidated. The role of miRNA has recently been evaluated in human or murine macrophages infected with Leishmania (Leishmania) major, L. (L.) donovani or L. (L.) amazonensis. However, no literature exists regarding miRNA dysregulation in host cells infected with L. (L.) infantum or L. (Viannia) species. Since we previously showed that L. (L.) infantum infection induced unfolded protein response (UPR) in macrophages, we focused on miR-346, which has been shown to be induced by the UPR-activated transcription factor sXBP1 and has a potential role in the modulation of the immune response. Macrophages differentiated from U937 and/or THP-1 human monocytic cells were infected with four L. (L.) infantum strain/clinical isolates and one L. (V.) sp. clinical isolate. A significant upregulation of miR-346 (p < 0.05) was observed in infections with all the Leishmania species tested. Moreover, RFX1 (a miR-346 predicted target gene) was found to be significantly downregulated (p < 0.05) after 48h infection, and miR-346 was found to have a role in this downregulation. The induction of miR-346 in macrophages infected with L. (L.) infantum and L. (V.) sp., reported here for the first time, could play a role in regulating macrophage functions since several MHC- or interferon-associated genes are among the targets of this miRNA. Hence, miR-346 could be considered an attractive anti-Leishmania drug target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...